Exercice 1

Soit
$$a = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$$

On rappelle que A est nilpotente, s'il existe un entier naturel non nul p tel que $A^p=(0)$ et $tr\left(A\right)=a+d$

- 1. Calculer $A^2 tr(A) \cdot A + det(A) \cdot I_2$
- 2. On suppose dans cette question que A est nilpotente
 - (a) Montrer que det(A) = 0
 - (b) Soit $k \in \mathbb{N}^*$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $A^k = \alpha A$
 - (c) Montrer que tr(A) = 0 et que $A^2 = (0)$

Exercice 2

Soit $(a, b, c) \in \mathbb{R}^3$ tel que $a^2 + b^2 + c^2 = 1$ et $|a| \neq 1$

Soit
$$A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$
 et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1. (a) Vérifier que A est antisymétrique
 - (b) En déduire que A est non inversible

2. On pose
$$A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
 et $P = \begin{pmatrix} a & 0 & 1 - a^2 \\ b & -c & -ab \\ c & b & -ac \end{pmatrix}$

- (a) Montrer que $P \in GL_3(\mathbb{R})$
- (b) Trouver $\alpha \in \mathbb{R}$ tel que $A'^3 = \alpha A'$ On admet, dans la suite, que $A = PA'P^{-1}$
- 3. Vérifier que $A^3 = -A$
- 4. Soient $k \in \mathbb{R}^*$ et $B_k = k.I_3 + A$
 - (a) Vérifier que $B_k = P(k.I_3 + A')P^{-1}$
 - (b) Montrer que B_k est inversible
 - (c) En déduire que $B_k^\prime = k.I_3 A$ est inversible
 - (d) Montrer que $B_k^{-1} = \frac{1}{k} I_3 \frac{1}{k^2 + 1} A + \frac{1}{k(k^2 + 1)} A^2$

Exercice 3

Soient
$$(m,n) \in (\mathbb{N}^*)^2$$
 et $\mathbb{U}_n = \left\{ z_k = e^{\frac{2ik\pi}{n}}; k \in \mathbb{Z} \right\}$

- 1. Montrer que $\mathbb{U}_n = \left\{ z_r = e^{\frac{2ir\pi}{n}}; \ r \in \{0, ..., n-1\} \right\}$
- 2. En déduire que si $\mathbb{U}_n=\mathbb{U}_m$ alors n=m
- 3. Montrer qu'il existe $w \in \mathbb{U}$ tel que $\forall z \in \mathbb{U}_n$, $\exists k \in \mathbb{Z}$ vérifiant $z = w^k$. On dit que w est un générateur de \mathbb{U}_n .
- 4. (a) Montrer que $z_m = e^{\frac{2im\pi}{n}}$ est générateur de \mathbb{U}_n si et seulement si m et n sont premiers entre eux.
 - (b) Montrer que $\mathbb{U}_n \subset \mathbb{U}_m$ si et seulement si $n \mid m$
 - (c) En déduire que $\mathbb{U}_n \cap \mathbb{U}_m = \mathbb{U}_{n \wedge m}$
 - (d) On suppose dans cette question que m et n sont premiers entre eux. Déterminer $\mathbb{U}_n\cap\mathbb{U}_m$
- 5. On définit sur \mathbb{U}_n une loi de composition interne notée (*) définie par :

$$z_k * z_{k'} = z_{kk'}$$
, où $(k, k') \in \mathbb{Z}^2$

On rappelle que $z_k = e^{\frac{2ik\pi}{n}}$.

- (a) Montrer que la loi (*) est commutative, associative et admet un élément neutre $e \in \mathbb{U}_n$
- (b) On suppose dans cette question que n=4Déterminer les éléments symétrisables de \mathbb{U}_4 pour la loi (*)
- (c) On suppose dans cette question m et n sont premiers entre eux. Montrer que z_m est symétrisable dans \mathbb{U}_n pour la loi (*)